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ABSTRACT:  A self-similar method is used to analyse numerically the one-dimensional, unsteady, self-similar 

flow of a perfectly conducting mixture of a non-ideal gas and small solid particles, behind a strong shock, driven 

by a cylindrical or spherical piston, moving according to an exponential law in the presence of an azimuthal 

magnetic field. In order to get some essential features of shock propagation the small solid particles are 

considered as pseudo fluid. It is also assumed that the equilibrium flow condition is maintained in the whole 

flow- field and the viscous stress and heat conduction of the mixture are negligible. Effects of change in the 

values of parameters  𝑝,    (dust parameters), 𝑏   (non-idealness parameter of the gas) and   
   (magnetic 

parameter) on the shock strength, piston position and on the flow-variables in the flow-field behind the shock 

front are obtained. It is found that there is a decrease in the shock strength and the value of piston position due to 

non-idealness of the gas as well as due to the presence of dust-particles and the magnetic-field. This decrease in 

the shock strength and the value of piston position is interpreted as a result of decrease in the compressibility of 

the mixture. Mutual effects of parameters  𝑝,    , 𝑏   and   
   are also obtained and it is found that magnetic-

field slightly reduces the effects of  𝑝 ,    and 𝑏   on the shock strength and on the piston position; whereas 

presences of dust particles significantly reduce the effects of magnetic field on shock strength, piston position 

and on the the flow-variables. Solutions are obtained for both the isothermal and adiabatic flows of the mixture.  

A comparative study is also made between these two flows of the mixture and is found that assumption of zero 

temperature gradient brings a profound change in the density profile as compared to that of adiabatic flow 

whereas profiles of the other flow-variables are little affected.  

KEYWORDS: Shock waves, piston problem, self-similar solutions, two-phase flow, non-ideal gas, small-solid 

particles, magnetic-field, exponential shock, isothermal flow, adiabatic flow. 

 

1. INTRODUCTION: 

The problem of shock wave propagation in two-

phase flow has been studied by many research 

workers such as Hiagashino and Suzuki [1], Pai et 

al. [2] Miura and Glass [3], Higashino [4], 

Vishwakarma and Nath [5] and Nath [6] etc., 

because of its application in variety of fields such 

as astrophysics, geophysics, nuclear science, 

plasma physics etc. Sedov [7] and Ranga Rao and 

Ramana [8] indicated that a limiting case of a self-

similar flow with power law shock is a flow-field 

formed with an exponential law. Ranga Rao and 

Ramana [8] and Singh and Vishwakarma [9] have 

obtained solutions for the problem of unsteady, 

self-similar motion of a gas displaced by a piston 

according to an exponential law. Vishwakarma and 

Nath [5] have obtained the self-similar solutions for 

both the isothermal and adiabatic flows of a 

mixture of a perfect gas and small solid particles 

behind an exponential shock and discussed the 

effects of the presence of dust particles on the 

shock strength and on the flow variables. 

In all the above-mentioned works, the dusty gas is 

assumed to be a mixture of perfect gas and small 

solid particles. But the perfect gas law cannot be 

applied to actual gas with sufficient accuracy when 

the interaction between its component molecules 

occurs. Therefore a number of study have been 

made for the shock wave propagation in a non-ideal 

gas, particularly, by Anisimov and Spiner [10], 

Ranga Rao and Purohit [11], Vishwakarma, Patel 

and Chaube [12], Vishwakarma and Nath [13], 

Vishwakarma and Patel [14], Vishwakarma and 

Nath [15], Ojha and Singh [16], Nath [17], Sahu 

[18] etc.. Vishwakarma and Nath [13] have 

obtained the similarity solution for the isothermal 

and adiabatic flows of a non-ideal gas behind an 

exponential shock. Vishwakarma and Patel [14] 
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have extended this work by taking a mixture of 

non-ideal gas and small solid particles in place of 

non-ideal gas. 

In the present work, we derive the similarity 

solution for the shock wave propagation in a 

magnetised non-ideal dusty gas. This work may 

have application to many astrophysical and nuclear 

science phenomena like motion in interstellar 

medium, supernova explosion, heliosphere etc. in 

which shock waves appear in the magnetised dusty 

medium. Some authors have discussed the shock 

propagation in magnetised non-ideal gas, 

particularly, Nath [19], Vishwakarma and Patel 

[20], Nath and Sahu [21], Singh et al. [22] etc.. 

Singh et al. have obtained the self-similar solution 

for exponential shock wave in non-ideal 

magnetogasdynamics. But no one has studied the 

problem of shock wave propagation in magnetised 

non-ideal dusty gas.  

In this paper we investigate the self-similar solution 

for the propagation of shock wave driven out by a 

cylindrical or spherical piston moving according to 

an exponential law, namely, 

        (  ),     ,                           (1)                                                                                             

where    is the radius of piston, A and   are 

dimensional constants and t is the time. 

Since motion is self-similar therefore shock and 

piston both obey same law. Hence shock will also 

be exponential. Thus, 

       (  ),                                       (2)                                                                                      

In order to get some essential features of shock 

propagation, small solid particles are taken as 

pseudo-fluid and it is assumed that the equilibrium 

flow condition is maintained in the whole flow-

field and the mixture is permeated by an azimuthal 

magnetic field. Also, the viscous stress and heat 

conduction of the mixture are assumed to be 

negligible.  

The solutions are obtained in section when the flow 

is adiabatic. An alternative assumption of zero 

temperature gradient (isothermal flow) throughout 

the flow may also be taken (Korobeinikov [23], 

Laumbach and Probstein [24], Sachdev and Ashraf 

[25]), because when flow is in extreme conditions, 

transfer of heat takes place behind a strong shock 

by the mode of radiation and for this condition 

assumption of adiabaticity may not be valid. 

Effects of a change in the values of parameters    

and   (dust parameters), �̅� (non-idealness 

parameter of the gas),   
   (magnetic parameter) 

are obtained on the propagation of shock and on the 

flow-field behind it. A comparison is also made 

between the solutions of isothermal and adiabatic 

flows. An interaction of parameters    ,    and �̅� 

with the parameter   
   is obtained to find the 

changes in the effects of these parameters due to 

the presence of magnetic field. 

2.  EQUATIONS OF MOTION AND      

     BOUNDARY CONDITIONS:  

     ISOTHERMAL FLOW-   

The equations of motion for a one-dimensional, 

unsteady, isothermal flow of a perfectly conducting 

mixture of a non-ideal gas and small solid particles 

in the presence of an azimuthal magnetic field can 

be written as- 
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                                                         (6)                                                                                                                                                                 

where   is the density of the mixture,   is the flow 

velocity, 𝑝 is the pressure of the mixture,   is the 

azimuthal magnetic field,   is the magnetic 

permeability,   and   are the space and time co-

ordinates and    1or 2 for cylindrical and 

spherical symmetry. 

We consider the medium to be a perfectly 

conducting mixture of a non-ideal gas and small 

solid particles permeated by an azimuthal magnetic 

field.  

The equation of state of non-ideal gas in the 

mixture is taken to be (Vishwakarma and Nath 

[15], Ranga Rao and Purohit [11], Anisimov and 

Spiner [10]) 

𝑝        (  𝑏   ) ,                        (7)                                                                                                                                                                                                         

where 𝑝  and    are the partial pressure and partial 

density of the gas in the mixture,   is the 

temperature of the gas (and of the solid particles as 

the equilibrium flow condition is maintained),    is 

the specific gas constant and b is the internal 

volume of the gas. There is an interaction between 

component molecules of the non-ideal, this 

deviation of non-ideal gas from the ideal state is 

taken into account in the above equation. It is also 

assumed that the density of the non-ideal gas is so 

small that the triple, quadruple and higher order 

collisions  
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among the molecules of the gas are negligible and 

therefore the gas molecules interact through binary 

collisions only.    

The specific volume of solid particle is assumed to 

remain unchanged by variation in the temperature 

and pressure.                                                                                                                               

Thus, the equation of state of solid particles in the 

mixture is,  

     constant,                                    (8) 

where     is the species density of the solid 

particles.  

The equation of state of the mixture may be written 

as (Vishwakarma and Nath [15] 

𝑝      
   

[  𝑏 (    )]                (9)                    

 

where   
   

 
  is the volume fraction and    

   

  
  

is the mass fraction (concentration) of the solid 

particles in the mixture. Here     and     are the 

total mass and volumetric extension of the solid 

particles and V and m are the total volume and total 

mass of the mixture.   

The relation between    and   is given by (Pai 

[26])                                

   
     

 
.                                          (10)                                                                                                                                                                                                                                                                                                                                                                              

In equilibrium flow,    is constant in whole flow 

field. Therefore from (10)  

 
 

 
 cconstant.                                      (11)                                                                                                                                                                                                                                      

Also, we have the relation (Pai [26]) 

  
  

 (    )   
,                                  (12)                                                                                                                                                                                                                                       

where   
   

  
  is the ratio of the density of the 

solid particles to the species density of the gas.  

 

The internal energy per unit mass of the mixture 

may be written as 

    [       (    )   ]        ,                                                                               

                                                            (13) 

where      is the specific heat of the solid particles, 

   is the specific heat of the gas at constant volume 

and     is the specific heat of the mixture at 

constant volume. 

The specific heat of the mixture at constant 

pressure is 

            (    )   ,            (14)                                                                                                                                    

 

where    is the specific heat of the gas at constant 

pressure.  

The ratio of the specific heats of the mixture is 

given by (Pai et al. [2], Pai [26], Marble [27]), 

  
   

   
  

       

     
                                   (15)                                                                                                                                                                                                                           

where       
  

  
  ,        

  

    
      and        

   

  
                                                                                                            

Now           (    )(     )   

             (    )                                    (16)                                                                        

where       (     )   neglecting the term 𝑏    

(Anisimov and spiner [10], Singh [28]). The 

internal energy per unit mass of the mixture is, 

therefore, given by  

   
  (   )

  (   )       (    ) 
.               (17)   

 

2.1. Jump Conditions  

Now we consider that a strong shock (cylindrical or 

spherical) driven by a piston moving according to 

an exponential law, is propagated into the perfectly 

conducting 

 

mixture of a non-ideal gas and small solid particles, 

of constant density     at rest (    ) and with 

negligibly small counter pressure (𝑝   ), in the 

presence of an azimuthal magnetic field. The 

azimuthal magnetic field is varying as          , 

where   and   are constants.  

The flow variables immediately ahead of the shock 

are  

      constant, 

     𝑏                                           (18)                                                                                                                                                                           

𝑝  𝑝  
(   )   

                          , 

where   is the radius of the shock and variables 

with subscript ῾1´ denote their values immediately 

ahead of the shock. 

From relation (12) we have                                                                                                             
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  (    )     
 ,                                    (19)                                                                                                                                                                                                                              

where    
   

   

  is the ratio of the density of the 

solid particles to the initial density of gas. 

Jump conditions across the strong shock front are 

as follows 

   (    )       , 

  (    )       , 

𝑝    (    )  
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                                                             (20) 

where subscript     refers to the values immediately 

behind the shock and   
  

  
  is the shock velocity. 

From shock conditions (20), we have 

   (   )  , 

𝑝  ,(   )  
  

  

 
(  

 

  )-                                                                                              

   
 

 
             

 

 
    , 

    (   )  ,      

                                                              (21) 

where   (      ) is given by the relation                                              

(   )    [{�̅�(    )   }(   )      

   
  ]    [{(    )     �̅�(    )(  

 )}  
   �̅�(    )(   )]   {�̅�(  

   )(   )    }   
                                   

                                                             (22)                                                                                                                        

and �̅� =𝑏   . Also, the Alfven Mach number    is 

defined by              

    
  

    

   
 .                                           (23)                                                                                                                     

 

Equation (6) together with (9) gives  

 

  
 

 (    )[    (    )]

  (   )[     (    )]
 .              (24)     

 

3.    SELF-SIMILARITY 

       TRANSFORMATION- 

The similarity transformation for the problem under 

consideration are taken as (Vishwakarma and Nath 

[15])   

     ( )        ( )                                                       
𝑝        ( )             ( ) , 

  
 

       

 

    ( ) ,                                                                                               

                                                              (25)                                                                                                                                                                                                         

where V, P, H, and D all are functions of non-

dimensional similarity variable   only. 

The variable   
 

 
 

 

    (  )
 .            (26)                                                                                               

 

  assumes the value ‘1’ at the shock front and    

on the piston position. 

 

From equation (24) with aid of equation (25) and 

(21), we have 

 

 ( )  
(   )(    ) [   ̅ (    )]*    

 

  
   

   (   )+

(     ) [   ̅(    )]
.                                                                

 

                                                            (27)  

 

By use of similarity transformations (25) equations  

(2) to (5) ,can be transformed as

 

 (   )
  

  
   

  

  
 

   

 
                                                                                               

 

                                                             (28) 

 (   )
  

  
   

  

  
 (   )

  

 
                                                                              

 

                                                            (29)                     

(   )
  

  
  

 

 

  

  
  

  

  
   

  

  
                                                                                                      

 

                                                           (30)                       

 

where,     

 

   ( )  
(   )(    )[   ̅ (    )(     )]*    

 

 
   

  (   )+

(     )   [   ̅(    )]
                                                                                                                

 

Solving equations (28) to (30), we get                                                                          

 
  

  
 

  

 
,                                                   (31)                                                                                                                      
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 (   )    

 
 ,                                   (32)                                                                                                                                                                                                                                                                                                                                                                                                                                       

  

  
 

    

 
 ,                                           (33)                                                                                                                                                                                                             

where, X=X( )  
   (   )        

 (      )  (   )  
  .                              

             

 Also, by using similarity transformations (25), the 

shock boundary conditions (21) take the form 

 V( )  (   )                             

  ( )  
 

 
   

  ( )  *(   )  
  

  

 
(  

 

  )+                                                            

   ( )  
  

  

 
  . 

                                                              (34)  

 

The condition that to be satisfied at the piston 

surface is that the velocity of the fluid is equal to 

the velocity of piston. 

The kinematic condition from equation (23) can be 

written as 

  (  )    .                                            (35)                                                                                        

The ordinary differential equations (  )to (33) can 

be numerically integrated with shock boundary 

conditions (34) to obtain the solution of the 

problem. 

 

4. ADIABATIC FLOW- 

In this section, we present the similarity solution 

for the adiabatic flow of a perfectly conducting 

mixture of a non-ideal gas and small solid particles 

behind a strong shock driven by a cylindrical or 

spherical piston moving according to an 

exponential law in the presence of an azimuthal 

magnetic field. 

Here, the shock conditions are the same as the 

shock conditions (19) of the isothermal flow.                                                                                                                                     

For adiabatic flow, the equations of motion are the 

equations (3), (4), (5), and equation (Vishwakarma 

[29], Steiner and Hirschler [30], Vishwakarma and 

Nath [15]) 

 
   

  
  

   

  
 

 

  ,
  

  
  

  

  
-                                                                                                 

                                                     (36) 

 

By use of similarity transformations (23), equations 

(3), (4), (5) and equation (  ) can be transformed 

as 
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                                                            (40) 

where     

   ( )  
 *   ̅ (    )(     ) (   ){   ̅ (    )}

 
+

 (     ){   ̅ (    )}
. 

 

Solving equations (35) to (38), we get 

 
  

  
 

  

 
                                                 (41)                                                                                                                                                              

 
  

  
 

 (   )    

 
,                                   (42)                                                                                       

  

  
 

    

 
,                                              (43)                                                                               

 
  

  
 

    

 
 

  

(   )
  ,                              (44)                                                                              

where  

     ( )  

   
(   )

      (   )        

(     )  (   )      

 

Here, the transformed shock boundary conditions 

and the kinematic condition at the piston will be 

same as in the case of isothermal flow (equations 

(34) and equation (35)). 

Now for obtaining the solution to the adiabatic 

flow, we can numerically integrate the equations 

(41) to (44), with shock boundary conditions (34).     
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5. RESULTS AND DISCUSSION-  

To obtain the solutions of differential equations 

(28) to (30) in isothermal flow and (41) to (44) in 

adiabatic flow, we use numerical integration by 

Runge - Kutta method of order four along with the 

shock boundary conditions (35). We start 

numerical integration from shock front (   ) and 

continue it until a value    (piston position) is 

approached, where 

 (   )                                                                

For the purpose of numerical integration the values 

of constant parameters are taken to be (Pai et al. 

[2], Miura and Glass[3], Vishwakarma[29], Steiner 

and Hirschler [30])    ;   
 

 
 ;              

     ;         ; �̅�       ;   
           

       The value     corrensponds to spherical 

shock,      to the dust free case,      �̅�    

to the perfect gas case,  �̅�      to the non-ideal  

gas,   
     to the non-magnetic case.         

is typical value of ratio of specific heat of small 

solid particles and specific heat of gas at constant 

volume. 

 

 

 

 

 

 

Table 1: Values of the density ratio   across the shock front and the position of piston  𝑝 at different values of 

parameters  𝑝,  1 , 𝑏  and   
−2

  for    = 2,   =   ⁄  and  ´ 
= 0.25.       

                                                  

  −2  𝑏     𝑎   𝑝       𝑝  

Isothermal flow  Adiabatic flow  

   0    0    1    0    0.25   0.92989   0.945032  

   0    0    1  0.2   0.391045   0.86943   0.88141  

   0    0  100  0.2  0.2407042   0.93211   0.94723  

   0  0.1    1    0  0.3065522   0.90925   0.92381  

   0  0.1    1  0.2  0.4176798   0.86   0.87182  

   0  0.1  100  0.2  0.2879469   0.91488   0.92969  

0.005    0    1    0  0.255571  0.92789   0.94202  

0.005    0    1  0.2  0.3925079  0.86938   0.88112  

0.005     0  100  0.2  0.2465791  0.93004   0.94411  

0.005  0.1    1   0   0.309912  0.90833   0.92243  

0.005  0.1    1  0.2  0.4189384  0.86   0.87158  

0.005  0.1  100  0.2  0.2917437  0.91381   0.92809  

 0.01    0    1   0  0.2610386  0.92599   0.93934  

 0.01    0    1  0.2  0.3940022  0.86932   0.88082  

 0.01    0  100  0.2  0.252331  0.92808   0.94133  

 0.01  0.1    1   0  0.3132893  0.90741   0.92105  

 0.01  0.1    1  0.2  0.4202221  0.86   0.87134  

 0.01  0.1  100  0.2  0.2955502  0.91273   0.92651  

 

Table -1 shows the values of density ratio   across  

the shock front and the value of piston position     

in both the cases, when the flow is isothermal and 

adiabatic, for different values of the parameters     

   �̅� and   
    It is clear from Table-1 that the 

piston position is significantly affected due to the 

presence of dust particles; whereas little affected 

due to the presence of magnetic field. 
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Figures 1(a, b, c, d) and 2(a, b, c, d) show the 

variation of flow variables with respect to 

dimensionless variable  , in the flow-field behind 

the shock in the isothermal and adiabatic flows 

respectively. It is clear from these figures that 

values of non-dimensional velocity V, non-

dimensional density D, non-dimensional pressure P 

and non-dimensional magnetic field H increase in 

general as we move from shock front towards the 

piston. Figure 2(b) shows that there is an 

unbounded density distribution near the piston in 

the adiabatic flow. 

Effects of an increase in the value of   
  ( strength 

of ambient magnetic field) are  

(¡) to increase the value of   i.e. to decrease the 

shock strength (see Table 1); 

(¡¡) to decrease    i.e. to increase the distance of 

piston from the shock front (see Table 1); 

(¡¡¡) to decrease the flow-variables V, D and P at 

any point in the flow field behind the shock (see 

Figures 1(a, b, c) and 2(a, b, c)); and 

(¡v) to increase the magnetic field H in the flow-

field behind the shock (see Figures 1(d) and 2(d)). 

Effects of an increase in the value of mass 

concentration of solid particles    are 

(¡) to increase the value of   at       but to 

decrease at        i.e. to decrease the shock 

strength at      , but to increase at        

(see Table1);  

(¡¡) to decrease    at      , but to increase at 

       (see Table 1);  

(¡¡¡) to decrease the flow variables V, D and H at 

     but to increase at         at any point in 

the flow-field behind the shock (see Figures 1(a, b, 

d) and 2 (a, b, d)); and   

(iv) to decrease the pressure P at     , and to 

increase at       . 

When     , the density of small solid particles is 

equal to the density of the non-ideal gas in the 

mixture. Thus in the case of       small solid 

particles occupy a significant portion of the volume 

of the mixture which cause a decrease in the 

compressibility of the mixture remarkably. Also 

when     ,       , then an increase in    

gives an increase in   (the volume fraction of solid 

particles) which causes a further decrease in the 

compressibility and hence it results in increase in 

the distance between the shock and piston and a 

decrease in the shock strength. Now when    
   , the density of small solid particles is equal to 

hundred times to the density of the gas and so in 

this case, small solid particles occupy a very small 

portion of the volume. Hence it results in small 

decrease in the distance between the shock and 

piston and a increase in the shock strength.  
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Effects of an increase in the value of    are  

(i) to decrease the value of   i.e. to increase the 

shock strength (see Table 1);                                                                                                       

(ii)   to increase    (see Table 1); 

(iii)  to increase the flow-variables       and H 

(see Figures1(a, b, c, d) and 2(a, b, c, d)).  

 

Effects of an increase in the value of non-idealness 

parameter �̅� are  

(i)   to increase the value of   i.e. to decrease the 

shock strength, (see Table 1); 

(ii)  to decrease    (see Table 1); 

(iii)  to decrease the flow-variables        and H 

(see Figures1(a, b, c, d) and 2(a, b, c, d). 

An increase in the non-idealness parameter 𝑏 ̅, the 

internal volume occupied by the gas molecules 

increases, resulting in to in the compressibility of 

the mixture. 

 

Mutual effects of parameters           ̅ and   
   

on the shock strength (
 

 
), on the piston position 

(  ) and on the profiles of the flow-variables 

            : 

(i)  The effects of the presence of dust particles and 

the effects of non-idealness of gas on the shock 

strength and on the piston position are reduced due 

to the presence of magnetic field. Actually  
 

 
  and 

   decrease by increasing �̅�, whereas increase by 

increasing      also 
 

 
 and    decrease by increasing 

   when       These effects of       and �̅� on  
 

 
 and    are reduced by increasing the value of 

  
  .    

 (ii)  The effects of       and �̅� on the profiles of 

the flow-variables V, D and P are not affected due 

to the presence of magnetic field. 

(iii) The effects of magnetic field and the effects of 

non-idealness of the gas on the shock strength, 

piston position and on the flow-variables V, D and 

P are significantly reduced due to the presence of 

dust particles. Actually 
 

 
 ,    and flow-variables V, 

D and P decrease by increasing   
   as well as by 

increasing �̅�, but these effects of   
   and �̅� are 

profoundly reduced by increasing the value of    .  

Comparison between the isothermal and adiabatic 

flows of the mixture: 

(i) The density is finite at the piston in the flow-

field behind the shock front, in the case of 

isothermal flow, whereas in the case of adiabatic 

flow it becomes unbounded at the piston. (see 

Figures 1(b) and 2(b)). 

The above difference between the densities of the 

two flows seems to be necessary because with an 

unbounded density distribution near the piston in 

the case of isothermal flow violates the assumption 

of zero temperature gradient. 

(ii) The piston position    is greater in the case of 

adiabatic flow in comparison with that in the case 

of isothermal flow, i.e. distance between the shock 

front and piston is less in the case of adiabatic flow 

in comparison with that in the case of isothermal 

flow (see table 1). 

(iii) The pressure rapidly decreases to zero at the 

piston when the flow is dust free or almost dust free 

(      ,       ) in the case of adiabatic flow, 

whereas it remains finite at the piston in the case of 

isothermal flow (see Figures 1(c) and 2(c)). 

 

6. CONCLUSION: 

Present work, investigates the self-similar flow of a 

perfectly conducting mixture of a non-ideal gas and 

small solid particles, behind a strong shock driven 

out by a piston moving according to an exponential 

law, in the presence of an azimuthal magnetic-field  

for both the cases when the flow is isothermal and 

adiabatic. It is observed that the shock strength (
 

 
), 

value of piston position (  ) and also the effects of 

dust parameters       and the non-idealness 

parameter of the gas �̅�  on the shock strength and 

on the piston position are little affected due the 

presence of magnetic field. It is also observed that 

shock strength, value of piston position and the 

effects of magnetic field and effects of non-

idealness of the gas on  
 

  
, on    and on the profiles 

of the flow-variables are significantly affected due 

the presence of dust particles. 

These effects can be illustrated as- 

 (i)  The shock strength (
 

 
) and the value of piston 

position (  )  slightly decrease due to the presence 

of magnetic-field.     
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(ii)  The effects of parameters        and �̅�  on  
 

 
  

and on    are slightly reduced due to the presence 

of magnetic-field. 

 (iii)  The shock strength, the value of piston 

position and effects of parameters   
   and �̅�  on 

 

 
 

, on    and on the profiles of the flow -variables V, 

D and P are significantly reduced due to the 

presence of dust particles. 

It is further demonstrated that the assumption of 

zero temperature gradient brings a profound change 

in the density distribution as compared to that in 

the adiabatic flow whereas other flow-variables are 

little affected. 
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